*Large-angle pattern that due to its symmetry properties is subject to geometrical distortion, if the DOE is used at laser wavelengths significantly different (Δλ > 50nm) from the design wavelength.
Beam shaping optics in terms of diffractive optics involve the use of precisely engineered microstructures to control and shape light beams for a variety of advanced applications, leveraging the principles of diffraction to achieve high precision and flexibility.
Diffractive beam splitters excel in applications requiring precise control of light beams, compact and lightweight design, wavelength specificity, high efficiency, and versatile beam pattern generation. They are particularly valuable in laser systems, optical metrology, display technology, and spectroscopy, where their unique properties provide significant advantages over traditional beam splitters.
Diffractive pattern generators have a wide range of applications. In laser systems, they are used for beam shaping, allowing the laser beam to form desired shapes such as lines, circles, or complex patterns, which are essential in material processing, medical surgery, and laser printing. They play a crucial role in holography, creating holograms for data storage, security features on credit cards and passports, and 3D imaging. In optical testing and metrology, these generators produce specific patterns for testing optical components, measuring surface topography, and aligning optical systems. They are also used in displays and projection systems, including projectors and augmented reality devices, to create high-resolution and complex images. Additionally, they enhance the performance of optical communication systems by precisely controlling light propagation.
This article refers to: DOE_Special-Patterns (Special Patterns) (LD Collimators & Diffractive Optics: Pattern-Generator ) - Special Patterns
*Large-angle pattern that due to its symmetry properties is subject to geometrical distortion, if the DOE is used at laser wavelengths significantly different (Δλ > 50nm) from the design wavelength.